
智阳软件 GPS 接入规范

V2.04.15

版本 修改记录 时间 作者

1.0 定义基本数据结构 2017/4/5 肖小波

1.1 增加了存储方式 2017/4/6 肖小波

1.2 增加了加密库接口 2017/4/7 肖小波

1.3 为了方便开发，修改了接口 2017/5/12 肖小波

1.4 增加了原始数据块说明 2017/8/12 肖小波

1.5 增加第三方加密经纬度支持 2018/5/22
1.6 杰理平台增加文件末尾字节

（附录三）

2018/10/22 肖小波

1.7 增加 FAQ 2018/12/07 胡小力

1.8 增加了速度不一致和播放进

度不致的处理

2019/08/01 胡小力

2.0 增加了角度与高度 2019/11/01 肖小波

2.1 修复有些方案商集成时经纬

度超长导致的数据超长问题

2019/11/25 肖小波

2.3 增加了经纬度解密函数接口

的说明

2020/03/09 胡小力

2.5 增加了新 GPS 模块的描述 2020/7/22 胡小力

2.6 增加了说明 2020/08/20 胡小力

2.8 增加实时 GPS 数据显示功能 2021/05/10 胡小力

3.1 增加了参考代码 2024/04/18 肖小波

3.2 增加了区分加密的指导方法 2024/05/30 肖小波

3.3 多路文件命名参考 2024/08/27 肖小波

一．数据格式 .. 3
1 数据头 .. 3
2 数据块 .. 3

二 加密库 Sdk 接口 ...6
1 设置加密类型 .. 6
2 获取加密类型 .. 7
3 生成数据头 .. 7
4 生成加密数据块 .. 7
获取正确的经纬度放在水印 .. 8

三 GPS 数据存储 ..9
1 视频文件 .. 9
2 图片文件 .. 9
3 txt 数据文件 ..10

四 实时 GPS 数据 ..11
五 模块类型区分办法 .. 12

type 11，类型有两种： ..12
type 6 .. 12
type 5 .. 12

附录一 基础协议(目前不支持) ..12
兼容---昂行科技 行车记录仪 .. 12

附录二 数据存储到文件末尾 .. 13
添加 gps 数据到 mp4 文件末尾的方法 .. 13
(mstar ,联永，安霸，凌通等平台) .. 13
杰理平台----添加 gps 数据到 mp4 文件末尾的方法 ...13
通用添加 gps 数据到 AVI，TS，MP4，MOV 格式文件末尾 14

附录三 type11 参考代码(目前重点推荐) ... 14
附录四 type5，type6 ,type11 参考代码 ... 16
附录伍 GGA 解释参考代码 ...23
附录六 添加数据到文件末尾参考代码 ..25
FAQ 常见问题 ..27

Q：G-sensor 数据如何写入 ..27
Q:每个数据之间是否需要有空格 .. 27
Q:怎么避免地图上显示的线路有非常明显的毛刺 ..27
Q:为什么模块的数据与实际坐标不匹配 .. 27
Q:为什么模块串口出来的数据都比较实际坐标要大 ..27
Q:为什么地图坐标进度与实际视频进度不一致 .. 27
Q:为什么播放器速度与实际速度不一致 .. 27

GPS 数据格式： ...28
附录七： .. 29

多路文件播放，参考文件命名方法 ..29

一．数据格式

数据头 数据块 0 数据块 n
20 字节 N 字节 N 字节

1 数据头

数据标识 加密算法 数据块个数

15 字节: chIdentification 1 字节：nType 4字节:nCount

说明：

1) chIdentification：默认为字符串：“LIGOGPSINFO”；

2) nType:可以 type 5 或者 6,11，调试的时候需要跟我们确认，后面主要支持 11；
3) nCount:数据块的总数，每 1 秒生成一个数据块,，默认为 0xffff。

2 数据块

非加密数据块：

数据块恒定大小为：132 字节；

数据块

数据快头 数据块内容

4 字节 128 字节

nFrame
数据快头：

1) nFrame ：4 字节---帧数是不连续的。基本上，每 1 秒生成一个形式数据块，表示当 i
前这个数据快是第几秒。因此对 30fps 的 Movie 而言，每 30 帧生成一个行驶数据；对

60fps 的 Movie 而言，每 60 帧生成一个行驶数据，图片里面恒为 0，gpstxt 文件里面为索

引每次自加 1；
2) chInfomation:固定 128 个字节，不足的地方填’\0’；
chInfomation 数据块说明：

Type 11 模块：

内容 ASII 码如下：

日期，时间，纬度，经度，海拔，速度，角度，ID，gsensorx，gsensory，gsensorz；
各个部分以逗号隔开；

如下例：

"100424,042324,23.943216,112.648182,0.000,63.672,239.41,36373939318C3A5A4330FFFFFFFFFFF

F,0.1,0.2,0.1”
GPS 原始数据如下：

$GXBDT11,A,220921,102308,31.228115,121.032504,0.000,40.934,0.00,000A220811156015
*44
注意内容：

1 如果当前没有定位成功，经纬度全部为 0，G sensor 数据也为 0，每秒种采集一次，有定

位数据就用真实数据，没有就用 0， N:22.587164 E:113.871490，解释如下：

a) N 为北半球的意思，如果在南半球则为 S，E 为东经，如果是西经则为 W;
b) 纬度 22.587164 为以度为单位的 gps 数据，比如 gps 模块获取到的数据为 1122.34566，
需要转化为以度为单位的数据，转换公式为：

Float Value = 1122.34566 /100 (获取到度的整数) + 22.34566 /60.0f（把分转换为度，60
分为一度）；

经度 113.871490 同纬度一样需要同上公式进行转换，比如如果经度为 1122.23456，转

换后为：

Float Value = 1122.23456/100 (获取到度的整数) + 22.23456/60.0f（把分转换为度，60
分为一度）；

2 速度单位（参考$GPRMC），速度为原始的 gps 里面的数据，不需要要进行转换为公里。

单位为海里，请千万注意此处的 KM/H 只是一个识别符，而不是速度单位。

3 航向数据（参考$GPRMC），A:21.1,A 表示是航向数据，后面接角度 0 到 360，数据直接

来源与 GPRMC，不需要转换;
4 高度（参考$GPGGA），H表示是高度数据，后面的数据内容直接来源于$GPGGA，不

要做任何转换，

5 Gsensor 只保存两位小数，每个方向偏角最多只保存两位小数，如 x:+0.00 y:-0.31 z:+0.93，
单位是 G；
6 经纬度只允许小数点后保留 6位，速度只保留一位小数，航向与高度只保留以为小数；

参考代码如下：

sprintf(chInfomation, ,
"100424,042324,23.943216,112.648182,0.000,63.672,239.41,36373939318C3A5A4330FFFFFFFF
FFFF,0.1,0.2,0.1”);
100424 ----24 年 4 月 10 号；

042324 --- 4 点 23 分 24 秒；

23.943216,112.648182-----纬度，经度

非 type11 模块（type 5 与 type6）：

内容 ASII 码如下：

“2014/04/24 10:20:34 N:22.587164 E:113.871490 29.47 km/h x:+0.00 y:-0.31 z:+0.98 A:12.1
H:123.5

注意内容：

1 如果当前没有定位成功，经纬度全部为 0，G sensor 数据也为 0，每秒种采集一次，有定

位数据就用真实数据，没有就用 0， N:22.587164 E:113.871490，解释如下：

a) N 为北半球的意思，如果在南半球则为 S，E 为东经，如果是西经则为 W;
b) 纬度 22.587164 为以度为单位的 gps 数据，比如 gps 模块获取到的数据为 1122.34566，
需要转化为以度为单位的数据，转换公式为：

Float Value = 1122.34566 /100 (获取到度的整数) + 22.34566 /60.0f（把分转换为度，60
分为一度）；

经度 113.871490 同纬度一样需要同上公式进行转换，比如如果经度为 1122.23456，转

换后为：

Float Value = 1122.23456/100 (获取到度的整数) + 22.23456/60.0f（把分转换为度，60
分为一度）；

2 速度单位（参考$GPRMC），速度为原始的 gps 里面的数据，不需要要进行转换为公里。

单位为海里，请千万注意此处的 KM/H 只是一个识别符，而不是速度单位。

3 航向数据（参考$GPRMC），A:21.1,A 表示是航向数据，后面接角度 0 到 360，数据直接

来源与 GPRMC，不需要转换;
4 高度（参考$GPGGA），H 表示是高度数据，后面的数据内容直接来源于$GPGGA，不

要做任何转换，

5 Gsensor 只保存两位小数，每个方向偏角最多只保存两位小数，如 x:+0.00 y:-0.31 z:+0.93，
单位是 G；
6 经纬度只允许小数点后保留 6 位，速度只保留一位小数，航向与高度只保留以为小数；

参考代码如下：

sprintf(info->info, "%04d/%02d/%02d %02d:%02d:%02d %c:%.06f %c:%.06f %.01f km/h x:%.02f

y:%.02f z:%.02f A:%.01f H:%.01f", rmcinfo.Year, rmcinfo.Month, rmcinfo.Day,

rmcinfo.Hour, rmcinfo.Minute, rmcinfo.Second, rmcinfo.NSInd, rmcinfo.Latitude,

rmcinfo.EWInd, rmcinfo.Longitude, rmcinfo.Speed, rmcinfo.fX,rmcinfo.fY,

加密数据块：

数据块大小不恒定

数据块

数据快标识 数据块有效数据长度 数据内容

4 字节 4 字节 124 字节

chInfoTag nInfoLength chInfoByEncryption
说明：

1） chInfoTag: ”####” ，判断一个数据块是否

2）

3） 完整：1 找到 tag，然后找到长度，判断长度结束时候是否为下一个 tag，或者为 NULL
（最后一个数据块）；

2) nInfoLength:chInfoByEncryption中有效数据的长度，非有效数据用 0填充；

3) chInfoByEncryption:加密数据，分两部分，一个是有效数据一个是填充数据，有效数据解密后

数据格式如下，跟非加密数据块的格式一样，无效数据直接丢弃：

chInfoByEncryption
数据快头 数据块内容

4 字节 120 字节

nFrame chInfomation
跟非加密数据格式一致；

3 GPS 模块与数据（需要重点注意）

目前 GPS 模块支持两类，一种是 type11，一种是非 type11；
判断是否是 type11 的 gps 模块，只需要验证有没有以“$GXBDT”开头的语句；

后面将重点支持 type11.
注意：GPS 模块出来的 gps 数据保存在两个字符串里面：

1 以 GNGGA，里面的 GPS 数据是没有加密，可以用与水印上面，还有海拔数据，海拔的计

算方式是，水平海拔减去椭圆形水平海拔；

2 以$GXBDT11,开头的字符串，只能保存到视频文件里面给播放器使用，不能用来

做水印；

3 以$GXBDT5,开头的字符串，只能保存到视频文件里面给播放器使用，不能用来

做水印；

注意：$GXBDT11与$GXBDT5 开头的语句里面的内容完全一致，只需要判断“$GXBDT”
即可；

Gps 模块输出的字段里面有一个新加的$GXBDT11,开头的字符串，这个里面有我们需要

的所有数据：格式如下，$GXBDT11,是否定位，日期，时间，纬度，经度，速度，角度，

高度，芯片 id，*校验码；如下参考数据：

$GXBDT11,A,220921,102308,31.228115,121.032504,0.000,40.934,0.00,000A220811156015
*44
$GXBDT5,A,220921,102308,31.228115,121.032504,0.000,40.934,0.00,000A220811156015
*44
只需要把其中的：日期，时间，纬度，经度，速度，角度，高度，芯片 id，加上 gsensor
的数据加入即可；

RMC 字段的 gps 数据只做水印，不能保存到视频里面；

Gsensor 数据加载后面，完整的数据包是,加入 gsensor 的 x:0.1 y:0.02 z:0.03 那么例子如下：

220921,102308,31.228115,121.032504,0.000,40.934,0.00,000A220811156015,0.01,0.02,0.0

二 加密库 Sdk 接口

1 设置加密类型

函数：int SunSetEncType(int type)

参数：type，5，6，或者 11，后面主要支持 11；

使用： 设置当前加密算法的类型与是否加密；

2 获取加密类型

函数：int SunGetEncType()

说明： 返回当前加密算法的类型；

使用： 用于给数据头的最有一个 byte；

3 生成数据头

函数： int MakeHeader(char *output,int count);

参数： output：长度为 20 个字节，count 为数据块个数；

使用： 生成数据头

返回值：成功返回 0，失败返回-1；

说明：

按照协议生成数据头的大小为 20 个字节，其中前面 15 个字节内容固定为“LIGOGPSINFO”，不

够部分为 0，第十六个字节根据 SunSetEncType 设置而定，默认为 5；最后四个字节保存（int） count

的数据小端序保存。

例子：

4 生成加密数据块

函数： int MakeEncryptDataBlock(int nframe,char *chInfomation ,int chInfolength,unsigned

char *chOutput);

参数： nframe：nframe 为协议中数据块中的 nFrame ，chInfomation 为后面的日期，时间，gps，

gsensor 等字符串数据，chInfolength 为字符串数据长度，chOutput 输出加密后的数据块，长度恒

为 132 字节；

返回值：成功返回 0，失败返回-1；

使用： 生成加密数据

例子（附件里有完整参考代码）参考附录三 type11 参考代码：

：

unsigned char header[20];

//type 11 模块的加密数据实例如下

char chInfomation[128] =

“220921,102308,31.228115,121.032504,0.000,40.934,0.00,000A220811156015,0.01,0.02,0.
0”;

//非 type 11 模块的未加密数据实例如下

char chInfomation[128] = “2014/04/24 10:20:34 N:22.587164 E:113.871490 29.47 km/h x:+0.00
y:-0.31 z:+0.98 A:12.1 H:123.5”;

unsigned char chOutput[132];

int chInfolength = 100;

//生成数据头

memset(header,0,20);

SunSetEncType(11); //设置类型

MakeHeader(header,10);

//生成一条数据块

MakeEncryptDataBlock(10,chInfomation ,strlen(chInfomation),chOutput);

。。。。。。。。。。。。。

将 header（固定 20 字节）与 chOutput（固定 132 字节）写入文件相应位置即可。

获取正确的经纬度放在水印

1） Type11模块：

从 gps 的语句$GNGGA，里面的 GPS 数据是没有加密，可以用与水印上面，还有海拔数据，

海拔的计算方式是，水平海拔减去椭圆形水平海拔； GGA 代码解释参考附录伍；

2） 非 type11 模块：

这个里面的 gps 数据从$GPRMC 字段里面的 GPS 解码出来；

先优先使用函数：

void sunGpsGXDecode(int codectype,float *outflon, float *outfLat,float fLon, float

fLat);

// 如果平台不支持 float,则使用如下函数：

int SunCoordTransformation(int codectype,

int *OutLong, //经度，出参

int *OutLat, //纬度,出参

int InLong,

//入参，经度

int InLat

//入参，纬度

);

需要注意以下几点：

Codectype:标示采用哪一种解码方式，目前只支持输入 5，与 6；

1. 出参和入参单位都是为度，国兴模块出来的单位是度分，所以需要先转换成度，再传参

进去。千万不要传其它单位数据进去。

2. 因为很多平台不支持浮点数据，所以出参和入参请除以或者乘以 100000 得到整形数再

使用。

三 GPS 数据存储

1 视频文件

保存在视频文件末尾，每秒钟有一个 gps 数据块，格式如下：

总体文件格式：

描述信息 数据内容

4 字节长度 4 字节描述

信息

N 个字节

8+N SKIP（或者

skip）
数据头+n 个数据块

描述信息：

8 个字节，前 4 个字节保存数据内容总长度+8；保存方式：高位在前（保存在低位储存区），

大端序保存。

后 4 个字节是描述符: asii 码 ’skip’或者’hgps’；优先建议使用 skip；

数据内容：

数据头 数据块 0 数据块 n
20 字节 N 字节 N 字节

2 图片文件

保存在视频文件末尾，一张图片只有一个 gps 数据，数据格式如下：

总体文件格式：

描述信息 数据内容 结束信息

4 字节长度 4 字节描述

信息

N 个字节 4 个字节描述符 四个字节长度

8+N+8 SKIP（或者

skip）
数据头+n 个数据块 “&&&&” 8+N+8

描述信息：

8 个字节，前 4 个字节保存数据内容总长度+8；保存方式：高位在前（保存在低位储存区），

大端序保存。

后 4 个字节是描述符: asii 码 ’skip’或者’hgps’；优先建议使用 skip；
数据内容：

数据头 数据块 0
20 字节 N 字节

其中：

chInfoByEncryption
数据快头 数据块内容

4 字节 128 字节

nFrame chInfomation
注意：nFrame 这个字段有所不同，在图片文件存储中，nFrame 字段无效，建议配置为 0。
结束信息：

1 前四个字节”&&&&”;
2 后四个字节保存为总长度（8+N+8），大端序方式存储；

3 txt 数据文件

1. 命名规则

日期+时间(时分秒,24 小时制)+gps.txt
比如：2017/04/07 01:01:02
创建的文件名字为：2017-04-07-01-01-02.gps.txt
当天数据只保存在同一个文件中。

2. 保存路径

保存在 sdcard/gps 目录下面。

3. 文件格式：

文件为 Asii 码字符文件，文件内容结构如下：

总体文件格式：

描述信息 数据内容

4 字节长度 4 字节描述

信息

N 个字节

8+N SKIP（或者

skip）
数据头+n 个数据块

描述信息：

文件长度（总长度）保存在 4 个字节里面，高位在前（保存在低位储存区），大端序保存。

数据内容：

数据头 数据块 0 数据块 n
20 字节 N 字节 N 字节

其中：

chInfoByEncryption
数据快头 数据块内容

4 字节 128 字节

nFrame chInfomation
注意：nFrame 这个字段有所不同，在 txt 文件存储中，nFrame 保存为 gps的当前序号，比

如当前文件的第一 gps 数据，nFrame 为 0，第二条为 1，一次累计第那条为 n；每个新文件

的第一条 gps 数据的 nFrame 均为 0；

4. 文件操作：

App(应用软件) 使用 wifi,通过指令或者 http 文件协议等方式能读与删除 gps 数据文

件。Gps 定位成功后，即开始保存 gps 数据，一直到关闭 gps 或者关机。当天数据只保存在

同一个文件中。每个文件保存一天记录，一次最多保存一年。

四 实时 GPS 数据

1. 数据格式

char chInfomation[128] = “2014/04/24 10:20:34 N:22.587164 E:113.871490 29.47 km/h

x:+0.00 y:-0.31 z:+0.98 A:12.1 H:123.5”;

注：该格式与写入视频中的数据格式一样，不需要经过加密处理

2. 数据传输

采用 SOCKET 方式实时透传过来,CMD 为：8566
<String>格式定义

字段 示例数据 释义

ligo Zy01 标识数据来源，固定数据

由智阳指定

type 加密类型 指示加密模块类型

现有 5,6,7,11 三种

gps
2014 / 04 / 24 10: 20: 34 N:

22.587164 E: 113.871490 29.47

km / h x: +0.00 y: -0.31 z: +0.98

A: 12.1 H: 123.5

GPS 存储到视频的中报文

同样格式

3.数据返回格式：

<?xml version="1.0" encoding="UTF-8" ?>

- <Function>

<Cmd>8566</Cmd>

<Status>

{

"ligo": "zy01",

"type": "5",

"gps": "2014 / 04 / 24 10: 20: 34 N: 22.587164 E: 113.871490 29.47 km

/ h x: +0.00 y: -0.31 z: +0.98 A: 12.1 H: 123.5"

}

</Status>

</Function>

五 模块类型区分办法

type 11，类型有两种：

1）带有语句 GXBDT5：GGA 里面数据不加密，RMC 里面数据采用 type5 加密， GXBDT5
里面采用 type11 加密，主要是方便兼容老的 type5 模块；

2）带有语句 GXBDT511：GGA里面数据不加密，RMC里面数据采用 type6 加密，GXBDT511
里面采用 type11 加密，主要是方便兼容老的 type6 模块；

type 6
带有新增语句 “GXBD,”主要要与 type11 区分开，优先判断是否是 type11，在判断是否是

type 6；

type 5
以上语句都没有的时候，如果是加密模块那就是 type5；只要跟供应商区分是否是加密与

非加密模块；gga 与 rmc 都加密了，要解密需要采用解密函数；

附录一 基础协议(目前不支持)

兼容---昂行科技 行车记录仪

昂行科技行车记录仪 GPS 数据格式说明

每一个视频段的行驶数据存储在 Skip Atom 数据块中。

Skip Atom 数据块的格式是：16Bytes Header(GPS INFORMATION) + 4Bytes Number(N,
Number of
Samples) + 132Bytes x N

16Bytes Header 为信息头，其内容是 GPS INFORMATION 共计 15 个有效字符（含空格），

再加一个

NULL 结尾符。

4Bytes 为行驶数据块的个数 N。一般情况下，每 1 秒生成一个形式数据块。举例来说，

对 1080P
30fps 时长为 1 分钟的 Movie File 而言，N = 60(DEC) = 0x3C(HEX). 上图中的示例为 N =
0x3D = 61.

每个行驶数据块的大小为 132 个字节，数据格式如下：

o 4Bytes(当前数据所属帧数, 数据范围 1-3600) ----每一个视频最多 2min x 60s x 30fps =
3600frames。注：帧数是不连续的。基本上，每 1 秒生成一个形式数据块。因此对 30fps 的

Movie 而言，每 30 帧生成一个行驶数据；对 60fps 的 Movie 而言，每 60 帧生成一个行

驶数

据；

o 128Bytes 的行驶数据, “日期 时间 经度 纬度 速度 X 轴加速度 Y 轴加速度 Z 轴加速

度”。数据

之间以空格分开： 2014/04/24 10:20:34 N:22.587164 E:113.871490 29.47 km/h x:+0.000 y:-
0.031 z:+0.938。
注 意：

根绝昂行科技的 gps 数据规范，我们规范中的非加密模式默认兼容，只需要判断数据头的

标识，如果是”GPS INFORMATION”,即可使用非加密模式去解码。

附录二 数据存储到文件末尾

添加 gps 数据到 mp4 文件末尾的方法

(mstar ,联永，安霸，凌通等平台)

MP4 每个段叫一个容器，基本结构是：8 个字节（描述信息）+ N 字节（数据内容）描述信

息里面：4 个字节是指长度，后 4 个字节是段名（asii）我们一般命名为 skip；
4 个字节长度，存储方式 ：

按照高位在前低位在后的方法排列，比如长度为 0x12345678,此处存储方式是 0x12
0x34 0x56 0x78.
4 个字节长度值的由来 数据内容的长度 + 8。
图例如下：

描述信息 数据内容

4 字节长度 4 字节描述

信息

N 个字节

8+N+8 SKIP（或者

skip）
数据头+n 个数据块

杰理平台----添加 gps 数据到 mp4 文件末尾的方法

基本结构是：8 个字节（描述信息）+ N 字节（数据内容）+ 8 字节（结束标识）

描述信息里面：4 个字节是指长度，后 4 个字节是段名（asii）我们一般命名为 skip；
4 个字节长度，存储方式 ：

按照高位在前低位在后的方法排列，比如长度为 0x12345678,此处存储方式是 0x12
0x34 0x56 0x78.
4 个字节长度值的由来 数据内容的长度 + 8。
结束信息：4 个字节标识（杰理平台“&&&&”）（mstar 平台用 “####”），后面 4 个字

节是长度跟描述信息里面的 4 字节长度完全一致；

图例如下：

描述信息 数据内容 结束信息

4 字节长度 4 字节描述

信息

N 个字节 4 个字节描述符 四个字节长度

8+N+8 SKIP（或者

skip）
数据头+n 个数据块 “&&&&” 8+N+8

通用添加 gps 数据到 AVI，TS，MP4，MOV 格式文件末尾

基本结构是：8 个字节（描述信息）+ N 字节（数据内容）+ 8 字节（结束标识）

描述信息里面：4 个字节是指长度，后 4 个字节是段名（asii）我们一般命名为 skip；
4 个字节长度，存储方式 ：

按照高位在前低位在后的方法排列，比如长度为 0x12345678,此处存储方式是 0x12 0x34
0x56 0x78.
4 个字节长度值的由来 数据内容的长度 + 8。
结束信息：4 个字节标识“&&&&”，后面 4 个字节是长度跟描述信息里面的 4 字节长度完

全一致；

图例如下：

描述信息 数据内容 结束信息

4 字节长度 4 字节描述

信息

N 个字节 4 个字节描述符 四个字节长度

8+N+8 SKIP（或者

skip）
数据头+n 个数据块 “&&&&” 8+N+8

参考代码看附录六；

附录三 type11 参考代码(目前重点推荐)

int gps_data_tp11(char *rawGps,unsigned char *chOutput,int second,float
gx,float gy,float gz)

{
char *pDataCheck = NULL;
memset(chInfomation,0,128);
if (strstr(rawGps, "GXBDT"))
{

pDataCheck = strstr(rawGps, "GXBDT");
pDataCheck = strstr(pDataCheck, ",");
pDataCheck ++;
// 是否定位成功

if (pDataCheck && strstr(rawGps, ",A,") && (strlen(pDataCheck)) <
120)

{
//成功

pDataCheck = strstr(pDataCheck, ",");
pDataCheck ++ ;
char *pEnd = strstr(pDataCheck, "*");
if (pEnd) {

memset(chInfomation,0,sizeof(chInfomation));
memcpy(chInfomation, pDataCheck, pEnd - pDataCheck);
sprintf(&chInfomation[strlen(chInfomation)],",%.02f,%.02

f,%.02f",gx, gy, gz);
MakeEncryptDataBlock(second, (char*)chInfomation,

strlen(chInfomation),chOutput);
}

}
}
return 0;

}
// 判断语句是否完整有效

static bool CheckGpsValid(char* rawGps)
{

bool bCheck = FALSE;
unsigned char s_verify;
unsigned char tempValid;
char* pstr = NULL;
char* s_start = strstr(rawGps, "$");
char* s_end = strstr(rawGps, "*");
s_verify = *(s_end + 1);

if (s_verify >= 'A') s_verify = s_verify - 'A' + 10;
else s_verify = s_verify = s_verify - '0';
tempValid = *(s_end + 2);
if (tempValid >= 'A') tempValid = tempValid - 'A' + 10;
else tempValid = tempValid = tempValid - '0';

s_verify *= 16;
s_verify += tempValid;
unsigned char xor_verify = *(s_start + 1);
for (pstr = s_start + 2; pstr < s_end; pstr++) {

//xor the key information
xor_verify ^= *pstr;

}
if(xor_verify == s_verify) {

bCheck = TRUE;
}
return bCheck;

}
/***/
void PaserGps()
{

char *rawGps[2] =
{ "$GXBDT11,A,120124,032729,23.943572,112.648701,0.000,111.746,0.00,3637
3939318603C94330FFFFFFFFFFFF*72",

"$GXBDT15,A,120124,032729,23.943572,112.648701,0.000,111.746,0.00,36
373939318603C94330FFFFFFFFFFFF*72",

};
static int second =0; //这个要注意是指 当前视频的第几秒，

Unsigned char g_ligoHeader[20];
Unsigned char g_ligochoutput[132];
Unsigned char g_gpsOutPutToFile[152];

SunSetEncType(11);
MakeHeader(g_ligoHeader,1);
// 判断 gps数据是否完整有效

if(CheckGpsValid(rawGps)){
//将 type11 的模块添加到

gps_data_tp11(rawGps,s_headerBuf,second,0.0,0.0,0.0);
memcpy(g_gpsOutPutToFile,g_ligoHeader,20);
memcpy(&(g_gpsOutPutToFile[20]),g_ligochoutput, 132);

}
}

附录四 type5，type6 ,type11 参考代码

vstatic float gpsTranslate(float gpsData)
{

int a = (int)gpsData / 100;

float fRet = 0.0f;
float fmin = (gpsData / 100 - (float)a) * 100.0f;
fmin /= 60.0f;
fRet = (float)a + fmin;
return fRet;

}

// $GNRMC, 072800.016, A, 2126.98202, N, 11056.91337, E, 0.86, 62.07,
040221, , , A, V * 32
int gps_data_rmc(char *chRmcInfo, int length, double *flat, double *flon,

int *year, int *mon,int *mday, int *hour, int *min, int *sec,float
*speed,float *angle)
{

int i = 0;
char * pTemp = chRmcInfo, *pTab= NULL;
char chTemp[16];
int m_nLocation = 0;
double fRmcLat,fRmcLon;
if (!chRmcInfo) return -1;
pTemp = strstr(chRmcInfo, "RMC");
if (!pTemp) return -1;
i = 0;
do {

pTemp = strchr(pTemp, ',');
if (pTemp == NULL) break;

pTemp++;
// 纬度

if (i == 0)
{

//timer
*hour = pTemp[0] - '0';
*hour *= 10;
*hour += pTemp[1] - '0';

*min = pTemp[2] - '0';
*min *= 10;
*min += pTemp[3] - '0';
*sec = pTemp[4] - '0';
*sec *= 10;
*sec += pTemp[5] - '0';

}

else if(i == 1)
{

if(*pTemp == 'A' || *pTemp == 'a')
m_nLocation = 1;

else {
m_nLocation = 0;
break;

}
}
else if (i == 2)
{

pTab = strchr(pTemp, ',');
memset(chTemp, 0, sizeof(chTemp));
memcpy(chTemp, pTemp, pTab - pTemp);
fRmcLat =(float)atof(chTemp);
fRmcLat = gpsTranslate(fRmcLat);

}
else if (i == 3)
{

if (*pTemp != 'N' && *pTemp != 'n') {
if (fRmcLat > 0)

fRmcLat = 0 - fRmcLat;
}
*flat = fRmcLat;

}
// 经度

else if (i == 4)
{

pTab = strchr(pTemp, ',');
memset(chTemp, 0, sizeof(chTemp));
memcpy(chTemp, pTemp, pTab - pTemp);
fRmcLon = (float)atof(chTemp);
fRmcLon = gpsTranslate(fRmcLon);

}
else if (i == 5)
{

if (*pTemp != 'E' && *pTemp != 'e') {
if (fRmcLon > 0)

fRmcLon = 0 - fRmcLon;
}
*flon = fRmcLon;

}
else if (i == 6) //速度

{

int j = 0;
memset(chTemp, 0, sizeof(chTemp));
while (pTemp[j] != ',') {

chTemp[j] = pTemp[j];
j++;

}
*speed =(float)atof(chTemp);

}
else if (i == 7) //角度

{
int j = 0;
memset(chTemp, 0, sizeof(chTemp));
while (pTemp[j] != ',') {

chTemp[j] = pTemp[j];
j++;

}
*angle =(float)atof(chTemp);

// break;
}
else if (i == 8)
{

*mday = pTemp[0] - '0';
*mday *= 10;
*mday += pTemp[1] - '
*mon = pTemp[2] - '0';
*mon *= 10;
*mon += pTemp[3] - '0'
*year = pTemp[4] - '0';
*year *= 10;
*year += pTemp[5] - '0';
*year += 2000;

}
i++;

} while (i <= 9);
return m_nLocation;

}
int gps_data_gga(char *chGGaInfo, float *high,char *clat,char *clon,float
*flat,float *flon)
{

int i = 0;
char * pTemp = chGGaInfo, *pTab= NULL;
char chTemp[16];
float fRawLat,fRawLon;
float fseaHigh=0.0,floadHigh=0.0;

if (!chGGaInfo) return -1;
pTemp = strstr(chGGaInfo, "GGA");
if (!pTemp) return -1;
i = 0;
do {

pTemp = strchr(pTemp, ',');
if (pTemp == NULL) break;
pTemp++;
// 纬度

if (i == 2)
{

pTab = strchr(pTemp, ',');
memset(chTemp, 0, sizeof(chTemp));
memcpy(chTemp, pTemp, pTab - pTemp);
fRawLat =(float)atof(chTemp);
fRawLat = gpsTranslate(fRawLat);
*flat = fRawLat;

}
else if (i == 3)
{

if (*pTemp != 'N' && *pTemp != 'n') {
*clat = 'S';

}
else{

*clat = *pTemp;
}

}
// 经度

else if (i == 4)
{

pTab = strchr(pTemp, ',');
memset(chTemp, 0, sizeof(chTemp));
memcpy(chTemp, pTemp, pTab - pTemp);
fRawLon = (float)atof(chTemp);
fRawLon = gpsTranslate(fRawLon);
*flon = fRawLon;

}
else if (i == 5)
{

if (*pTemp != 'E' && *pTemp != 'e') {
*clon = 'W';

}
else{

*clon = *pTemp;

}
}
else if (i == 6) //速度

{
if (*pTemp == '0') {

return -1;
}

}
else if (i == 9) //角度

{
pTab = strchr(pTemp, ',');
memset(chTemp, 0, sizeof(chTemp));
memcpy(chTemp, pTemp, pTab - pTemp);
fseaHigh =(float)atof(chTemp);

}
else if (i == 10)
{

pTab = strchr(pTemp, ',');
memset(chTemp, 0, sizeof(chTemp));
memcpy(chTemp, pTemp, pTab - pTemp);
floadHigh =(float)atof(chTemp);
*high = fseaHigh - floadHigh;

}
i++;

} while (i <= 9);
return 1;

}

static int gxbd_flag =5;
static int second = 0;
unsigned char ligoGpsOutPutToFile[152];
static float rawFlat,rawFlon,rawHigh;
static char rawclat,rawclon,
void addGps()
{

char *rawGps =
{"$GNRMC,062952.00,A,2239.76198,N,11147.27389,E,0.000,102.04,280224,,,A
*7D"};
// char *rawGps =

{"$GXBDT5,A,280224,070808,23.943433,112.648159,0.000,89.676,0.00,363739
393101D9404330FFF
//FFFFFFFFF*75""};

// char *rawGps =
{"$GXBDT11,A,280224,070808,23.943433,112.648159,0.000,89.676,0.00,36373
9393101D9404330FFF
//FFFFFFFFF*75""};

int rawGps,max_index = 10;
char g_ligoHeader[20];
char g_ligochoutput[132];
char chInfomation[132];
double flat, lon;
int year, mon,mday, hour, min, sec;
float speed,angle;
float gsensorx,gsensory,gsensorz;
//判断是否 gps数据完整与合法

if(CheckGpsValid(rawGps[i]) == 0)
{
//如果非法

continue ;
}
//兼容多种类型，避免生产问题

if(strstr(rawGps,"GXBDT5")){
gxbd_flag=11;
printf("====GXBDT5====");
SunSetEncType(11);
//读取协议数据

MakeHeader(g_ligoHeader,0xffff);
gps_data_tp11(rawGps,g_ligochoutput,second,gsensorx,

gsensory,gsensorz);
memcpy(ligoGpsOutPutToFile,g_ligoHeader,20);
memcpy(&(ligoGpsOutPutToFile[20]),g_ligochoutput, 132);

}
else if(strstr(rawGps,"GXBDT11")){

gxbd_flag=11;
printf("====GXBDT11====");
SunSetEncType(11);
//读取协议数据

MakeHeader(g_ligoHeader,0xffff);
gps_data_tp11(rawGps,g_ligochoutput,second,gsensorx,

gsensory,gsensorz);
memcpy(ligoGpsOutPutToFile,g_ligoHeader,20);
memcpy(&(ligoGpsOutPutToFile[20]),g_ligochoutput, 132);

}
else if(strstr(rawGps,"GXBD,")){

gxbd_flag=6;

printf("====GXBD 6====");
}
else if(strstr(rawGps,"RMC,"))
{

if(gxbd_flag == 5 || gxbd_flag == 6)
{

SunSetEncType(6);
MakeHeader(g_ligoHeader,0xffff);
memset(chInfomation,0,sizeof(chInfomation));
if(gps_data_rmc(rawGps,strlen(rawGps),&flat, &flon,&year,

&mon, &mday, &hour, &min, &sec,&speed,&angle) == 1){
sprintf(chInfomation,"%04d/%02d/%02d %02d:%02d:%02d %c:%.

06f %c:%.06f %.01f km/h x:%.02f
y:%.02f z:%.02f A:%.01f H:%.01f",year,mon,mday, hour, min,

sec,(flat>0)?'N':'S',flat,(flon>0)?'E':'W',
flon,speed,gsensorx, gsensory,gsensorz,angle,rawHigh);
MakeEncryptDataBlock(second, (char*)chInfomation,

strlen(chInfomation),g_ligochoutput);
memcpy(ligoGpsOutPutToFile,g_ligoHeader,20);
memcpy(&(ligoGpsOutPutToFile[20]),g_ligochoutput, 132);

}
}

}
// 获取水印与海拔

else if(strstr(rawGps,"GGA,"))
{

// GGA
if(gps_data_gga(rawGps,&rawHigh,&rawclat,&rawclon,&rawFlat,&rawF

lon) != 1)
{

rawHigh = 0.0;
rawclat = 'N';
rawclon = 'E';
rawFlat = 0.0;
rawFlon= 0.0;

}
}

}

附录伍 GGA 解释参考代码

int gps_data_gga(char *chGGaInfo, float *high,char *clat,char *clon,float
*flat,float *flon)

{
int i = 0;
char * pTemp = chGGaInfo, *pTab= NULL;
char chTemp[16];
float fRawLat,fRawLon;
float fseaHigh=0.0,floadHigh=0.0;
if (!chGGaInfo) return -1;
pTemp = strstr(chGGaInfo, "GGA");
if (!pTemp) return -1;
i = 0;
do {

pTemp = strchr(pTemp, ',');
if (pTemp == NULL) break;
pTemp++;
// 纬度

if (i == 2)
{

pTab = strchr(pTemp, ',');
memset(chTemp, 0, sizeof(chTemp));
memcpy(chTemp, pTemp, pTab - pTemp);

fRawLat =(float)atof(chTemp);
fRawLat = gpsTranslate(fRawLat);
*flat = fRawLat;

}
else if (i == 3)
{

if (*pTemp != 'N' && *pTemp != 'n') {
*clat = 'S';

}
else{

*clat = *pTemp;
}

}
// 经度

else if (i == 4)
{

pTab = strchr(pTemp, ',');
memset(chTemp, 0, sizeof(chTemp));
memcpy(chTemp, pTemp, pTab - pTemp);
fRawLon = (float)atof(chTemp);
fRawLon = gpsTranslate(fRawLon);
*flon = fRawLon;

}

else if (i == 5)
{

if (*pTemp != 'E' && *pTemp != 'e') {
*clon = 'W';

}
else{

*clon = *pTemp;
}

}
else if (i == 6) //速度

{
if (*pTemp == '0') {

return -1;
}

}
else if (i == 9) //角度

{
pTab = strchr(pTemp, ',');
memset(chTemp, 0, sizeof(chTemp));
memcpy(chTemp, pTemp, pTab - pTemp);
fseaHigh =(float)atof(chTemp);

}
else if (i == 10)
{

pTab = strchr(pTemp, ',');
memset(chTemp, 0, sizeof(chTemp));
memcpy(chTemp, pTemp, pTab - pTemp);
floadHigh =(float)atof(chTemp);
*high = fseaHigh - floadHigh;

}
i++;

} while (i <= 9);
return 1;

}

附录六 添加数据到文件末尾参考代码

void WriteDataToFile()
{

float gSensorX, gSensorY, gSensorZ;
//1.0 单独一条写入文件中

int second = 0; //当前 gps 是视频中的第几秒

int type = 11;
unsigned char gpsHeader[20];

SunSetEncType(11);
//读取协议数据

MakeHeader(gpsHeader,0xffff);
//2.0 整体写入文件末尾

fp = fopen("d:\\media.mp5", "a+");
unsigned char* pGpsOutData = (unsigned char*)malloc(132 * 3);
//判断模块类型

// pGpsOutData --- 保存有三条 gps数据；

...............
//增加 skip 头

int datalength = 0;
unsigned char skipHeader[8];
memset(skipHeader, 0, 8);
datalength = 8 + 20 + 132 * 3 + 8;//skip(8 字节) + gpsheader(20 字

节)+gpsdata(3*132)+tail(8 字节)
skipHeader[0] = (datalength >>24) & 0xff;
skipHeader[1] = (datalength >>16) & 0xff;
skipHeader[2] = (datalength >> 8) & 0xff;
skipHeader[3] = datalength & 0xff;
skipHeader[4] = 'S';
skipHeader[5] = 'K';
skipHeader[6] = 'I';
skipHeader[7] = 'P';
fwrite(skipHeader, 1, 8, fp);
//LIGO GPS 信息头写入文件中

fwrite(gpsHeader, 1, 20, fp);
//LIGO GPS 数据写入文件中

fwrite(pGpsOutData, 1, 132 * 3, fp);
//增加末尾

unsigned char skipTail[8];
memset(skipTail, 0, 8);
skipTail[0] = '&';
skipTail[1] = '&';
skipTail[2] = '&';
skipTail[3] = '&';
skipHeader[0] = (datalength >> 24) & 0xff;
skipHeader[1] = (datalength >> 16) & 0xff;
skipHeader[2] = (datalength >> 8) & 0xff;
skipHeader[3] = datalength & 0xff;
fwrite(skipTail, 1, 8, fp);
//
fclose(fp);

}

FAQ 常见问题

Q：G-sensor 数据如何写入

A: 1.g-sensor 数据与 gps 数据在一条记录中一并调用 MakeEncryptDataBlock。不要单独分

开

2.g-sensor 数据与 gps数据之间需要有空格。

Q:每个数据之间是否需要有空格

A：是的。每个数据，包括 g-sensor 数据与 gps 之间都需要有空格。

Q:怎么避免地图上显示的线路有非常明显的毛刺

A: 1.第一次写入数据时，确保 GPS 已定到位

2.当前 GPS 数据经纬度与上一个经纬度进行比较防抖，如果相邻的两个经度或者纬

度变化过大，则取上一个的数据写入。

Q:为什么模块的数据与实际坐标不匹配

A:有很多模块是有加密的，GPS 本身输出的数据就是经过加密处理的，需要脱密之后

才与实际坐标一致。

PS：当前我们主推的 Gxplayer 播放器匹配的就是国兴北斗的双模模块。

Q:为什么模块串口出来的数据都比较实际坐标要大

A：因为 GPS 国际标准输出的 GPS 经纬度是“度分”结构的，开发人员需要自己转换成

度，文档上半部分有参考的算法。

PS：此处转换需很谨慎。没转换好很容易坐标偏差。

Q:为什么地图坐标进度与实际视频进度不一致

A：请用 GpsPaserv 工具分析视频文件，通常是因为视频秒数与 GPS 数据数量不一致，

比如说 60 秒数据就需要至少 59 组 GPS 数据。

1.GPS 数据多于视频长度，就会出现地图显示坐标滞后。

2.GPS 数据少于视频长充，就会出现视频还没播放完，但是地图已到达终点。

Q:为什么播放器速度与实际速度不一致

A：播放器默认 GPS 数据是海里，所以存储到视频中的数据一定单位是海里，不是公

里，请忽略 GPS 协议中的 “km/h”,此标记仅于数据识别。

。

GPS 数据格式：

$GPRMC,<1>,<2>,<3>,<4>,<5>,<6>,<7>,<8>,<9>,<10>,<11>,<12>*hh

<1>UTC 时间，hhmmss.sss(时分秒.毫秒)格式

<2>定位状态，A=有效定位，V=无效定位

<3>纬度 ddmm.mmmm(度分)格式(前面的 0 也将被传输)
<4>纬度半球 N(北半球)或 S(南半球)
<5>经度 dddmm.mmmm(度分)格式(前面的 0 也将被传输)
<6>经度半球 E(东经)或 W(西经)
<7>地面速率(000.0~999.9 节，前面的 0 也将被传输)
<8>地面航向(000.0~359.9 度，以正北为参考基准，前面的 0 也将被传输)
<9>UTC 日期，ddmmyy(日月年)格式

<10>磁偏角(000.0~180.0 度，前面的 0 也将被传输)
<11>磁偏角方向，E(东)或 W(西)
<12>模式指示(仅 NMEA01833.00 版本输出，A=自主定位，D=差分，E=估算，N=数据无效)

$GPGGA 语句包括 17 个字段：语句标识头，世界时间，纬度，纬度半球，经度，经度半球，

定位质量指示，使用卫星数量，水平精确度，海拔高度，高度单位，大地水准面高度，高度

单位，差分 GPS数据期限，差分参考基站标号，校验和结束标记(用回车符<CR>和换行符<LF>)，
分别用 14 个逗号进行分隔。该数据帧的结构及各字段释义如下：

$GPGGA,<1>,<2>,<3>,<4>,<5>,<6>,<7>,<8>,<9>,M,<10>,M,<11>,<12>*xx<CR><LF>
$GPGGA：起始引导符及语句格式说明(本句为 GPS 定位数据)；
<1> UTC 时间，格式为 hhmmss.sss；
<2> 纬度，格式为 ddmm.mmmm(第一位是零也将传送)；
<3> 纬度半球，N 或 S(北纬或南纬)
<4> 经度，格式为 dddmm.mmmm(第一位零也将传送)；
<5> 经度半球，E 或 W(东经或西经)
<6> 定位质量指示，0=定位无效，1=定位有效；

<7> 使用卫星数量，从 00 到 12(第一个零也将传送)
<8> 水平精确度，0.5 到 99.9
<9> 天线离海平面的高度，-9999.9 到 9999.9 米

M 指单位米

<10> 大地水准面高度，-9999.9 到 9999.9 米

M 指单位米

<11> 差分 GPS 数据期限(RTCM SC-104)，最后设立 RTCM 传送的秒数量

<12> 差分参考基站标号，从 0000 到 1023(首位 0 也将传送)。
* 语句结束标志符

xx 从$开始到*之间的所有 ASCII 码的异或校验和

<CR> 回车

<LF> 换行

附录七：

多路文件播放，参考文件命名方法

文件命名方法： 日期_时间+标志位.文件格式

比如： 20230919_120406A.ts
日期：年月日；20240919
时间：120406
标志位：A，B，C，D，四种类型

文件格式：ts,mov,mp4,avi 等

	一．数据格式
	1 数据头
	2 数据块
	 非加密数据块：
	Type 11 模块：
	非type11 模块（type 5 与type6）：

	二 加密库Sdk接口
	 1 设置加密类型
	 2 获取加密类型
	 3 生成数据头
	4 生成加密数据块
	获取正确的经纬度放在水印
	1） Type11模块：
	2） 非type11 模块：

	三 GPS 数据存储
	1 视频文件
	2 图片文件
	 3 txt 数据文件

	四 实时GPS数据
	五 模块类型区分办法
	附录一 基础协议(目前不支持)
	附录二 数据存储到文件末尾
	 添加gps数据到mp4 文件末尾的方法
	(mstar ,联永，安霸，凌通等平台)
	 杰理平台----添加gps数据到mp4 文件末尾的方法
	通用添加gps数据到AVI，TS，MP4，MOV格式文件末尾

	附录三 type11参考代码(目前重点推荐)
	附录四 type5，type6 ,type11参考代码
	附录伍GGA解释参考代码
	附录六 添加数据到文件末尾参考代码
	FAQ 常见问题
	Q：G-sensor数据如何写入
	Q:每个数据之间是否需要有空格
	Q:怎么避免地图上显示的线路有非常明显的毛刺
	Q:为什么模块的数据与实际坐标不匹配
	Q:为什么模块串口出来的数据都比较实际坐标要大
	Q:为什么地图坐标进度与实际视频进度不一致
	Q:为什么播放器速度与实际速度不一致

	GPS数据格式：
	附录七：

